quadrature specrtal density - definition. What is quadrature specrtal density
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

NUMERICAL INTEGRATION
Gaussian integration; Gaussian numerical integration; Gauss quadrature; Gauss legendre quadrature; Gaussian Quadrature; Gauss–Lobatto quadrature; Gauss-Lobatto quadrature
  • 2}} – 3''x'' + 3}}), the 2-point Gaussian quadrature rule even returns an exact result.
  • ''n'' {{=}} 5)}}

Density (computer storage)         
MEASURE OF THE QUANTITY OF INFORMATION BITS THAT CAN BE STORED ON A GIVEN LENGTH OF TRACK, AREA OF SURFACE, OR IN A GIVEN VOLUME OF A COMPUTER STORAGE MEDIUM
Bit density; Data storage density; Data density; Storage density; Storage densities; Memory storage densities; Computer storage density; Constant bit-density; Memory density; Memory storage density; Areal Density (Computer Storage); Areal storage density; Areal density (computer storage)
Density is a measure of the quantity of information bits that can be stored on a given length (linear density) of track, area of surface (areal density), or in a given volume (volumetric density) of a computer storage medium. Generally, higher density is more desirable, for it allows more data to be stored in the same physical space.
Areal density (computer storage)         
MEASURE OF THE QUANTITY OF INFORMATION BITS THAT CAN BE STORED ON A GIVEN LENGTH OF TRACK, AREA OF SURFACE, OR IN A GIVEN VOLUME OF A COMPUTER STORAGE MEDIUM
Bit density; Data storage density; Data density; Storage density; Storage densities; Memory storage densities; Computer storage density; Constant bit-density; Memory density; Memory storage density; Areal Density (Computer Storage); Areal storage density; Areal density (computer storage)
Areal density is a measure of the quantity of information bits that can be stored on a given length of track, area of surface, or in a given volume of a computer storage medium. Generally, higher density is more desirable, for it allows more data to be stored in the same physical space.
Density of air         
  • Effect of temperature and relative humidity on air density
MASS PER UNIT VOLUME OF EARTHS ATMOSPHERE
Air density; Atmospheric density
The density of air or atmospheric density, denoted ρ, is the mass per unit volume of Earth's atmosphere. Air density, like air pressure, decreases with increasing altitude.

ويكيبيديا

Gaussian quadrature

In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. (See numerical integration for more on quadrature rules.) An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable choice of the nodes xi and weights wi for i = 1, …, n. The modern formulation using orthogonal polynomials was developed by Carl Gustav Jacobi in 1826. The most common domain of integration for such a rule is taken as [−1, 1], so the rule is stated as

1 1 f ( x ) d x i = 1 n w i f ( x i ) , {\displaystyle \int _{-1}^{1}f(x)\,dx\approx \sum _{i=1}^{n}w_{i}f(x_{i}),}

which is exact for polynomials of degree 2n − 1 or less. This exact rule is known as the Gauss-Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1].

The Gauss-Legendre quadrature rule is not typically used for integrable functions with endpoint singularities. Instead, if the integrand can be written as

f ( x ) = ( 1 x ) α ( 1 + x ) β g ( x ) , α , β > 1 , {\displaystyle f(x)=\left(1-x\right)^{\alpha }\left(1+x\right)^{\beta }g(x),\quad \alpha ,\beta >-1,}

where g(x) is well-approximated by a low-degree polynomial, then alternative nodes xi' and weights wi' will usually give more accurate quadrature rules. These are known as Gauss-Jacobi quadrature rules, i.e.,

1 1 f ( x ) d x = 1 1 ( 1 x ) α ( 1 + x ) β g ( x ) d x i = 1 n w i g ( x i ) . {\displaystyle \int _{-1}^{1}f(x)\,dx=\int _{-1}^{1}\left(1-x\right)^{\alpha }\left(1+x\right)^{\beta }g(x)\,dx\approx \sum _{i=1}^{n}w_{i}'g\left(x_{i}'\right).}

Common weights include 1 1 x 2 {\textstyle {\frac {1}{\sqrt {1-x^{2}}}}} (Chebyshev–Gauss) and 1 x 2 {\displaystyle {\sqrt {1-x^{2}}}} . One may also want to integrate over semi-infinite (Gauss-Laguerre quadrature) and infinite intervals (Gauss–Hermite quadrature).

It can be shown (see Press, et al., or Stoer and Bulirsch) that the quadrature nodes xi are the roots of a polynomial belonging to a class of orthogonal polynomials (the class orthogonal with respect to a weighted inner-product). This is a key observation for computing Gauss quadrature nodes and weights.